Stop us if you’ve heard this one before, but a Russian spacecraft docked with the International Space Station has sprung a leak. On Saturday morning, Russia’s Roscosmos space agency disclosed on Telegram that a Progress cargo ship docked with the ISS had lost cabin pressure. NASA later said the depressurization was due to a coolant leak.
“The reason for the loss of coolant in the Progress 82 spacecraft is being investigated,” NASA announced. “The hatches between Progress 82 and the station are open, and temperatures and pressures aboard the station are all normal. The crew, which was informed of the cooling loop leak, is in no danger and continuing with normal space station operations.”
Per Space.com, Progress 82 arrived at the ISS on October 28th. Before Saturday's announcement, the spacecraft was scheduled to leave the station on February 17th. It’s unclear if Roscosmos will move forward with that timeline as originally planned. Russia’s Progress spacecraft are designed to burn up in the Earth’s atmosphere after they complete their resupply missions, meaning there’s no way for Roscosmos to investigate the leak on the ground. The timing of the discovery comes on the same day that a second Progress spacecraft docked with the ISS, and less than two months after another Russian spacecraft sprung a leak at the space station.
In December, Russia’s Soyuz MS-22 spacecraft began leaking coolant just as cosmonauts Dmitri Petelin and Sergey Prokopyev were preparing for a nearly seven-hour spacewalk. Roscosmos later blamed the incident on an apparent meteoroid strike. Unless there’s an emergency at the ISS, Roscosmos has deemed the spacecraft unfit to transport humans. The agency will launch another Soyuz craft later this month to bring Petelin and Prokopyev, as well as NASA astronaut Frank Rubio, back to Earth.
Ars Technica’s Eric Berger points out, the Progress incident raises doubts about whether Soyuz MS-22 was actually hit by a micrometeorite. Russia never released images of the impact, and the country’s space program has a history of recent issues. In 2021, for instance, Roscosmos blamed a software bug on the Nauka misfiring that temporarily moved the ISS out of its usual orientation.
Stop us if you’ve heard this one before, but a Russian spacecraft docked with the International Space Station has sprung a leak. On Saturday morning, Russia’s Roscosmos space agency disclosed on Telegram that a Progress cargo ship docked with the ISS had lost cabin pressure. NASA later said the depressurization was due to a coolant leak.
“The reason for the loss of coolant in the Progress 82 spacecraft is being investigated,” NASA announced. “The hatches between Progress 82 and the station are open, and temperatures and pressures aboard the station are all normal. The crew, which was informed of the cooling loop leak, is in no danger and continuing with normal space station operations.”
Per Space.com, Progress 82 arrived at the ISS on October 28th. Before Saturday's announcement, the spacecraft was scheduled to leave the station on February 17th. It’s unclear if Roscosmos will move forward with that timeline as originally planned. Russia’s Progress spacecraft are designed to burn up in the Earth’s atmosphere after they complete their resupply missions, meaning there’s no way for Roscosmos to investigate the leak on the ground. The timing of the discovery comes on the same day that a second Progress spacecraft docked with the ISS, and less than two months after another Russian spacecraft sprung a leak at the space station.
In December, Russia’s Soyuz MS-22 spacecraft began leaking coolant just as cosmonauts Dmitri Petelin and Sergey Prokopyev were preparing for a nearly seven-hour spacewalk. Roscosmos later blamed the incident on an apparent meteoroid strike. Unless there’s an emergency at the ISS, Roscosmos has deemed the spacecraft unfit to transport humans. The agency will launch another Soyuz craft later this month to bring Petelin and Prokopyev, as well as NASA astronaut Frank Rubio, back to Earth.
Ars Technica’s Eric Berger points out, the Progress incident raises doubts about whether Soyuz MS-22 was actually hit by a micrometeorite. Russia never released images of the impact, and the country’s space program has a history of recent issues. In 2021, for instance, Roscosmos blamed a software bug on the Nauka misfiring that temporarily moved the ISS out of its usual orientation.
NASA is going back to an old idea as it tries to get humans to Mars. It is teaming up with the Defense Advanced Research Projects Agency (DARPA) to test a nuclear thermal rocket engine in space with the aim of using the technology for crewed missions to the red planet. The agencies hope to "demonstrate advanced nuclear thermal propulsion technology as soon as 2027," NASA administrator Bill Nelson said. "With the help of this new technology, astronauts could journey to and from deep space faster than ever — a major capability to prepare for crewed missions to Mars."
Under the Demonstration Rocket for Agile Cislunar Operations (DRACO) program, NASA's Space Technology Mission Directorate will take the lead on technical development of the engine, which will be integrated with an experimental spacecraft from DARPA. NASA says that nuclear thermal propulsion (NTP) could allow spacecraft to travel faster, which could reduce the volume of supplies needed to carry out a long mission. An NTD engine could also free up space for more science equipment and extra power for instrumentation and communication.
As far back as the 1940s, scientists started speculating about the possibility of using nuclear energy to power spaceflight. The US conducted ground experiments on that front starting in the '50s. Budget cutbacks and changing priorities (such as a focus on the Space Shuttle program) led to NASA abandoning the project at the end of 1972 before it carried out any test flights.
There are, of course, risks involved with NTP engines, such as the possible dispersal of radioactive material in the environment should a failure occur in the atmosphere or orbit. Nevertheless, NASA says the faster transit times that NTP engines can enable could lower the risk to astronauts — they could reduce travel times to Mars by up to a quarter. Nuclear thermal rockets could be at least three times more efficient than conventional chemical propulsion methods.
NASA is also looking into nuclear energy to power related space exploration efforts. In 2018, it carried out tests of a portable nuclear reactor as part of efforts to develop a system capable of powering a habitat on Mars. Last year, NASA and the Department of Energy selected three contractors to design a fission surface power system that it can test on the Moon. DARPA and the Defense Department have worked on other NTP engine projects over the last few years.
Meanwhile, the US has just approved a small modular nuclear design for the first time. As Gizmodoreports, the design allows for a nuclear facility that's around a third the size of a standard reactor. Each module is capable of producing around 50 megawatts of power. The design, from a company called NuScale, could lower the cost and complexity of building nuclear power plants.
NASA is going back to an old idea as it tries to get humans to Mars. It is teaming up with the Defense Advanced Research Projects Agency (DARPA) to test a nuclear thermal rocket engine in space with the aim of using the technology for crewed missions to the red planet. The agencies hope to "demonstrate advanced nuclear thermal propulsion technology as soon as 2027," NASA administrator Bill Nelson said. "With the help of this new technology, astronauts could journey to and from deep space faster than ever — a major capability to prepare for crewed missions to Mars."
Under the Demonstration Rocket for Agile Cislunar Operations (DRACO) program, NASA's Space Technology Mission Directorate will take the lead on technical development of the engine, which will be integrated with an experimental spacecraft from DARPA. NASA says that nuclear thermal propulsion (NTP) could allow spacecraft to travel faster, which could reduce the volume of supplies needed to carry out a long mission. An NTD engine could also free up space for more science equipment and extra power for instrumentation and communication.
As far back as the 1940s, scientists started speculating about the possibility of using nuclear energy to power spaceflight. The US conducted ground experiments on that front starting in the '50s. Budget cutbacks and changing priorities (such as a focus on the Space Shuttle program) led to NASA abandoning the project at the end of 1972 before it carried out any test flights.
There are, of course, risks involved with NTP engines, such as the possible dispersal of radioactive material in the environment should a failure occur in the atmosphere or orbit. Nevertheless, NASA says the faster transit times that NTP engines can enable could lower the risk to astronauts — they could reduce travel times to Mars by up to a quarter. Nuclear thermal rockets could be at least three times more efficient than conventional chemical propulsion methods.
NASA is also looking into nuclear energy to power related space exploration efforts. In 2018, it carried out tests of a portable nuclear reactor as part of efforts to develop a system capable of powering a habitat on Mars. Last year, NASA and the Department of Energy selected three contractors to design a fission surface power system that it can test on the Moon. DARPA and the Defense Department have worked on other NTP engine projects over the last few years.
Meanwhile, the US has just approved a small modular nuclear design for the first time. As Gizmodoreports, the design allows for a nuclear facility that's around a third the size of a standard reactor. Each module is capable of producing around 50 megawatts of power. The design, from a company called NuScale, could lower the cost and complexity of building nuclear power plants.
Amid the pantheon of Greek gods, few are more revered than Artemis, Goddess of the hunt, chastity, and the moon; Mistress of Animals, Daughter of Zeus and twin sister to Apollo. Famed for her pledge to never marry, feared from that time she turned the peeping Acteon into a stag and set his own hunting dogs upon him, Artemis has stood as a feminist icon for millenia. It seems only fitting then that NASA names after her a trailblazing mission that will see both the first woman and first person of color set foot on the moon, ahead of humanity’s first off-planet colony.
In fact, NASA has been naming its missions after Zeus’ progeny since the advent of spaceflight. There was the Mercury Program (the Roman spelling of Hermes) in 1958, then Gemini in ‘68 followed by Apollo in ‘73. NASA took a quick break on the naming convention during the Shuttle era but revived it when it formally established the Artemis program in 2017. Working with the European Space Agency (ESA), Japan Aerospace Exploration Agency (JAXA), Canadian Space Agency (CSA), and a slew of private corporations, NASA’s goal for Artemis is simple: to re-establish a human foothold on the moon for the first time since 1972, and stay there.
NASA is building a coalition of partnerships with industry, nations and academia that will help us get to the moon quickly and sustainably, together,” then-NASA director Jim Bridenstine said in 2020. “Our work to catalyze the US space economy with public-private partnerships has made it possible to accomplish more than ever before. The budget we need to achieve everything laid out in this plan represents bipartisan support from the Congress.”
“Under the Artemis program, humanity will explore regions of the moon never visited before, uniting people around the unknown, the never seen, and the once impossible,” he continued. “We will return to the moon robotically beginning next year, send astronauts to the surface within four years, and build a long-term presence on the Moon by the end of the decade.”
Just as Artemis the Goddess grew out of earlier pre-Hellenistic mythology, Artemis the Program was born from the ashes of the earlier Constellation program from the early 2000s which sought to land on the moon by 2020 — specifically the Ares I, Ares V, and Orion Crew Exploration Vehicle that were developed as part of that effort. In 2010, then-President Barack Obama announced that the non-Orion bits of Constellation were being axed and simultaneously called for $6 billion in additional funding as well as the development of a new heavy lift rocket program with a goal of putting humans on Mars by the mid-2030s. This became the NASA Authorization Act of 2010 and formally kicked off development of the Space Launch System, the most powerful rocket NASA has built to date.
The Artemis program was helped further in December of 2017 when former President Donald Trump signed Space Policy Directive 1 (SPD 1). That policy change, “provides for a US-led, integrated program with private sector partners for a human return to the moon, followed by missions to Mars and beyond” and authorized the campaign that would become Artemis two years later. In 2019, then-Vice President Mike Pence announced that the program’s goals were accelerating, the moon landing goal pushed up four years to 2024 though its original goal of Mars in the 2030s remained unchanged.
“The directive I am signing today will refocus America’s space program on human exploration and discovery,” Trump said at the time. “It marks a first step in returning American astronauts to the moon for the first time since 1972, for long-term exploration and use. This time, we will not only plant our flag and leave our footprints — we will establish a foundation for an eventual mission to Mars, and perhaps someday, to many worlds beyond.”
Bang, zoom, straight to the moon
Now, we know NASA can put people on the moon — it’s the keeping them there, alive, that’s the issue. The moon, for all its tide-inducing benefits here on Earth, is generally inhospitable to life, what with its general lack of breathable atmosphere and liquid water, weak gravity, massive temperature swings and razor-sharp, statically-charged dust. The first colonists will need power, heat, atmosphere, potable water — all of which will have to either be brought from Earth or extracted locally from the surrounding regolith.
Complicating matters, the Moon, at 230,000 miles away, is about a thousand times farther than the International Space Station, and getting a crew with everything they need to survive for more than a few days is going to require multiple trips — not just from Earth orbit to the moon but also from lunar orbit down to the surface and back. But high-risk, high-reward logistical nightmares are kind of NASA’s whole deal.
As such, the Artemis program is split between the SLS missions, which will eventually bring the human crew to the moon, and the support missions, which will bring everything else. That includes robotic rovers, the Human Landing System, as well as moonbase and Gateway components along with all of the logistical support and infrastructure that they will require.
Artemis SLS missions
The SLS missions are built around NASA’s new Deep Space Exploration System, which comprises the SLS super heavy-lift launch vehicle, the Orion Spacecraft and the Exploration Ground Systems at Kennedy Space Center (KSC).
NASA’s deep space exploration system
The Space Launch System is the single most powerful rocket humanity has built and, given its modular, evolvable design, will likely continue to be for the foreseeable future. Its initial configuration, dubbed Block 1, consists of just the core stage with four RS-25 engines and two, five-segment solid rocket boosters. Once the SLS breaks atmosphere, its Interim Cryogenic Propulsion Stage takes over for in-space propulsion.
Those RS-25’s are the same engines that flew on the Space Shuttle. Aerojet Rocketdyne of Sacramento, California is updating and upgrading 16 of them for use in the modern era — bringing them up to standard for use with the SLS — with a new engine controller, new nozzle insulation, and 512,000 pounds of thrust. Altogether, the core stage will produce 8.8 million pounds of thrust and be capable of pushing 27 metric tons (22,000 sqft) of cargo out to the moon at speeds in excess of 24,500 miles per hour. The Artemis 1 mission that launched in November, as well as the next two Artemis missions, are slash will be powered by Block 1 rockets.
Block 1B rockets will include an Exploration Upper Stage (EUS) built by Boeing and composed of “four RL10C-3 engines that produce almost four times more thrust than the one RL10B-2 engine that powers the ICPS,” per NASA. That additional engine will enable the space agency to haul 38 tons of cargo out of Earth’s gravity well. This updated block will provide NASA a bit more flexibility in its launches. A 1B rocket can be configured to lift the Orion spacecraft or cargo loads into deep space as easily as it can be for hauling large cargoes to the moon or Mars. NASA plans to lift unwieldy portions of the moonbase and Gateway into space with it.
The SLS’ final form (for now) will be Block 2. Standing more than 30 stories tall, weighing the equivalent of 10 fully-loaded 747’s, the block 2 blasting 9.2 million pounds of thrust (20 percent more than the Saturn V) to push 46 metric tons of stuff (taking up as much as 54,000 square feet) into deep space. Once that configuration comes online, NASA expects it to take on much of the heavy lifting (sorry not sorry) in delivering crews and cargo to the moon.
Orion spacecraft
Riding atop the SLS’s multi-ton controlled explosions is the Orion Spacecraft, the first crew capsule designed for deep space exploration in more than a generation. Designed and built with help from the ESA, the Orion sandwiches a four-person crew cabin in between a services module that holds all of the important life support, navigation and propulsion systems, and a Launch Abort System (LAS) that will forcibly eject the crew capsule from the larger launch vehicle if a catastrophic failure occurs during takeoff.
The 50-foot tall LAS weighs 16,000 pounds and is designed to engage within milliseconds of a launch going sideways, lifting the crew cabin away from the rest of the SLS at Mach 1.2 using the 400,000 pounds of thrust produced by the abort motor. Its attitude control motor provides another 7,000 pounds of thrust to keep the capsule upright during escape while the jettison motor will separate the LAS from the cabin once clear, the latter deploying a parachute ahead of its upcoming water landing.
The LAS actually predates Orion by four years. The LAS was first integrated into a Delta IV and flown at the White Sands test facility in New Mexico in 2010 while the (uncrewed) Orion Exploration Flight Test-1 didn’t take off for its four-hour, two orbit jaunt until 2014.
The Orion main cabin is just under 16 feet tall and just over 16 feet in diameter. Its four wing solar array produces 11kW of power and the attached service module holds enough air and water to keep the crew alive, if a bit panicked and sir-crazy, for up to three weeks.
Exploration ground systems
Located at the Kennedy Space Center in Florida, the Artemis program’s Exploration Ground Systems (EGS) is tasked with developing and enacting the facilities and operations necessary to conduct SLS missions. That includes the Vehicle Assembly Building, the Launch Control Center, the Firing Rooms, Mobile Launchers 1 and 2, the Crawlers that haul rockets out to the launchpads, and also the launchpads — specifically Launch Pad 39B. Teams have been working to modernize many of those facilities and NASA notes that it, “has successfully upgraded its processes, facilities, and ground support equipment to safely handle rockets and spacecraft during assembly, transport, and launch.”
NASA already has five main Artemis launches scheduled. The uncrewed Artemis I, again, successfully launched in November. Artemis II, which will carry four live astronauts for the first time but only loop around the moon, launches in 2024. Artemis III will go up in 2025 and is expected to be the first to actually set down on the moon. Artemis IV is slated for 2027 and will deliver half of the lunar Gateway (as well as debut the EUS) while Artemis V is set to deliver the other half of the Gateway in 2028. From there, NASA has some thoughts on Artemis missions VI (2029) through X (2033) but has not finalized any details as of yet.
Artemis support missions
“We need several years in orbit and on the surface of the moon to build operational confidence for conducting long-term work and supporting life away from Earth before we can embark on the first multi-year human mission to Mars,” Bridenstine said in 2020. “The sooner we get to the moon, the sooner we get American astronauts to Mars.”
But before we can build confidence in our ability to survive on Mars, we need to build confidence in our ability to survive on the moon. The Artemis support missions will do just that. The Capstone Mission ("Cislunar Autonomous Positioning System Technology Operations and Navigation Experiment"), for example, successfully launched a 55-pound cubesat in June to confirm NASA’s math for the much larger Gateway’s future orbital path. While in orbit, the Capstone will communicate and coordinate some of its maneuvers with the Lunar Reconnaissance Orbiter which has been circling the moon since 2009.
In 2023, NASA also plans to launch the VIPER robotic rover to the moon’s South Pole where it will search the lowest, darkest, coldest craters for accessible water ice. Finding a source for H2O is of paramount importance to the long-term viability of the colony. In space, water isn’t just for drinking and bathing — it can be split into its component atoms and used to fuel our oxidizing rockets, potentially turning the Moon into an orbital gas station as we push farther out from Earth. The rover, and others like it, will be delivered to the surface as part of NASA’s Commercial Lunar Payload Services (CLPS) program.
It wasn’t until the mid 1990s that NASA even confirmed the presence of water ice on the moon and only two years ago did they discovered ice accessible from the moon’s surface. “We had indications that H2O – the familiar water we know – might be present on the sunlit side of the moon,” Paul Hertz, director of the Astrophysics Division in the Science Mission Directorate at NASA Headquarters, said at the time. “Now we know it is there. This discovery challenges our understanding of the lunar surface and raises intriguing questions about resources relevant for deep space exploration.”
Similarly, any habitat established on the surface will need an ample supply of electricity to remain online. Solar charging is one obvious choice (that lack of atmosphere is finally coming in handy) but NASA has never been one to underprepare and has already selected three aerospace companies to develop nuclear power sources for potential deployment.
Gateway
In addition to a surface installation, NASA plans on putting a full-fledged space station, dubbed the Lunar Gateway, into orbit around the moon where it will serve much the same purpose as the ISS does today. Visiting researchers will stay aboard the pressurized Habitation and Logistics Outpost (HALO) module where they’ll have access to research facilities, remote rover controls and docking for both Orion capsules from Earth and HLS (Human Landing System) landers to the moon’s surface. A 60kW solar plant will provide power to the station, which also serves as a communications relay hub with the planet. The station’s position around the moon will also provide a unique astronomical perspective for future research.
The Gateway will very much be an international operation. As NASA points out, Canada’s CSA is providing “advanced robotics” for use upon the station, the ESA is supplying a second living module called the International Habitat (IHab) as well as the ESPRIT communications module and an array of research cubesats. Japan’s JAXA will kick in additional habitat components and assist with resupply logistics.
Human Landing System and rovers
From the Gateway, astronauts and researchers will ferry down to the moon’s surface to collect samples, run experiments and conduct observations aboard the Human Landing System, a reusable lunar lander program currently being operated out of Marshall Space Flight Center in Huntsville, Alabama.
NASA selected SpaceX’s Starship for its initial landing system in April 2021, awarding the company $2.9 billion to further the vehicle’s development. The agency then awarded SpaceX with another $1.15 billion this past November as part of the Option B contract modification. The extra money will help fund planned upgrades to the spacecraft, which is being modified from the base Starship design for use on and around the moon’s surface.
“Continuing our collaborative efforts with SpaceX through Option B furthers our resilient plans for regular crewed transportation to the lunar surface and establishing a long-term human presence under Artemis,” Lisa Watson-Morgan, NASA HLS program manager, said in November. “This critical work will help us focus on the development of sustainable, service-based lunar landers anchored to NASA’s requirements for regularly recurring missions to the lunar surface.”
Researchers, however, will not be content to travel nearly a quarter million miles just to set down on the moon and look out the lander’s windows. Instead, they’ll be free to wander around the surface safely ensconced in spacewalk equipment supplied by Axiom Space and Collins Aerospace.
“With these awards, NASA and our partners will develop advanced, reliable spacesuits that allow humans to explore the cosmos unlike ever before,” said Vanessa Wyche, director of NASA’s Johnson Space Center in Houston, said in June. “By partnering with industry, we are efficiently advancing the necessary technology to keep Americans on a path of successful discovery on the International Space Station and as we set our sights on exploring the lunar surface.”
Those researchers won’t be on foot either. Just as the Apollo astronauts famously bounced around on NASA’s first-gen lunar rovers, the Artemis missions will use new Lunar Terrain Vehicles. The unpressurized buggies are currently still in development but NASA expects to have a finalized proposal ready by next year and have the LTVs ready for surface service by 2028.
The Artemis Base Camp
When not in use, the LTVs will be parked at NASA’s Artemis Base Camp at the lunar South Pole, alongside a pressurized version designed for longer-duration expeditions. The surface habitat itself will be able to support up to four residents at a time and provide communications, equipment storage, power and, most importantly, robust radiation shielding (and there’s the downside of not having an atmosphere). A site hasn’t yet been officially selected, though mission planners are looking for areas near the region’s permanently shadowed craters where water ice is expected to be most easily accessible (aside from the negative 280 degree temperatures and perpetual darkness).
“On each new trip, astronauts are going to have an increasing level of comfort with the capabilities to explore and study more of the moon than ever before,” Kathy Lueders, associate administrator for human spaceflight at NASA Headquarters, said in 2020. “With more demand for access to the moon, we are developing the technologies to achieve an unprecedented human and robotic presence 240,000 miles from home. Our experience on the moon this decade will prepare us for an even greater adventure in the universe — human exploration of Mars.”
Amid the pantheon of Greek gods, few are more revered than Artemis, Goddess of the hunt, chastity, and the moon; Mistress of Animals, Daughter of Zeus and twin sister to Apollo. Famed for her pledge to never marry, feared from that time she turned the peeping Acteon into a stag and set his own hunting dogs upon him, Artemis has stood as a feminist icon for millenia. It seems only fitting then that NASA names after her a trailblazing mission that will see both the first woman and first person of color set foot on the moon, ahead of humanity’s first off-planet colony.
In fact, NASA has been naming its missions after Zeus’ progeny since the advent of spaceflight. There was the Mercury Program (the Roman spelling of Hermes) in 1958, then Gemini in ‘68 followed by Apollo in ‘73. NASA took a quick break on the naming convention during the Shuttle era but revived it when it formally established the Artemis program in 2017. Working with the European Space Agency (ESA), Japan Aerospace Exploration Agency (JAXA), Canadian Space Agency (CSA), and a slew of private corporations, NASA’s goal for Artemis is simple: to re-establish a human foothold on the moon for the first time since 1972, and stay there.
NASA is building a coalition of partnerships with industry, nations and academia that will help us get to the moon quickly and sustainably, together,” then-NASA director Jim Bridenstine said in 2020. “Our work to catalyze the US space economy with public-private partnerships has made it possible to accomplish more than ever before. The budget we need to achieve everything laid out in this plan represents bipartisan support from the Congress.”
“Under the Artemis program, humanity will explore regions of the moon never visited before, uniting people around the unknown, the never seen, and the once impossible,” he continued. “We will return to the moon robotically beginning next year, send astronauts to the surface within four years, and build a long-term presence on the Moon by the end of the decade.”
Just as Artemis the Goddess grew out of earlier pre-Hellenistic mythology, Artemis the Program was born from the ashes of the earlier Constellation program from the early 2000s which sought to land on the moon by 2020 — specifically the Ares I, Ares V, and Orion Crew Exploration Vehicle that were developed as part of that effort. In 2010, then-President Barack Obama announced that the non-Orion bits of Constellation were being axed and simultaneously called for $6 billion in additional funding as well as the development of a new heavy lift rocket program with a goal of putting humans on Mars by the mid-2030s. This became the NASA Authorization Act of 2010 and formally kicked off development of the Space Launch System, the most powerful rocket NASA has built to date.
The Artemis program was helped further in December of 2017 when former President Donald Trump signed Space Policy Directive 1 (SPD 1). That policy change, “provides for a US-led, integrated program with private sector partners for a human return to the moon, followed by missions to Mars and beyond” and authorized the campaign that would become Artemis two years later. In 2019, then-Vice President Mike Pence announced that the program’s goals were accelerating, the moon landing goal pushed up four years to 2024 though its original goal of Mars in the 2030s remained unchanged.
“The directive I am signing today will refocus America’s space program on human exploration and discovery,” Trump said at the time. “It marks a first step in returning American astronauts to the moon for the first time since 1972, for long-term exploration and use. This time, we will not only plant our flag and leave our footprints — we will establish a foundation for an eventual mission to Mars, and perhaps someday, to many worlds beyond.”
Bang, zoom, straight to the moon
Now, we know NASA can put people on the moon — it’s the keeping them there, alive, that’s the issue. The moon, for all its tide-inducing benefits here on Earth, is generally inhospitable to life, what with its general lack of breathable atmosphere and liquid water, weak gravity, massive temperature swings and razor-sharp, statically-charged dust. The first colonists will need power, heat, atmosphere, potable water — all of which will have to either be brought from Earth or extracted locally from the surrounding regolith.
Complicating matters, the Moon, at 230,000 miles away, is about a thousand times farther than the International Space Station, and getting a crew with everything they need to survive for more than a few days is going to require multiple trips — not just from Earth orbit to the moon but also from lunar orbit down to the surface and back. But high-risk, high-reward logistical nightmares are kind of NASA’s whole deal.
As such, the Artemis program is split between the SLS missions, which will eventually bring the human crew to the moon, and the support missions, which will bring everything else. That includes robotic rovers, the Human Landing System, as well as moonbase and Gateway components along with all of the logistical support and infrastructure that they will require.
Artemis SLS missions
The SLS missions are built around NASA’s new Deep Space Exploration System, which comprises the SLS super heavy-lift launch vehicle, the Orion Spacecraft and the Exploration Ground Systems at Kennedy Space Center (KSC).
NASA’s deep space exploration system
The Space Launch System is the single most powerful rocket humanity has built and, given its modular, evolvable design, will likely continue to be for the foreseeable future. Its initial configuration, dubbed Block 1, consists of just the core stage with four RS-25 engines and two, five-segment solid rocket boosters. Once the SLS breaks atmosphere, its Interim Cryogenic Propulsion Stage takes over for in-space propulsion.
Those RS-25’s are the same engines that flew on the Space Shuttle. Aerojet Rocketdyne of Sacramento, California is updating and upgrading 16 of them for use in the modern era — bringing them up to standard for use with the SLS — with a new engine controller, new nozzle insulation, and 512,000 pounds of thrust. Altogether, the core stage will produce 8.8 million pounds of thrust and be capable of pushing 27 metric tons (22,000 sqft) of cargo out to the moon at speeds in excess of 24,500 miles per hour. The Artemis 1 mission that launched in November, as well as the next two Artemis missions, are slash will be powered by Block 1 rockets.
Block 1B rockets will include an Exploration Upper Stage (EUS) built by Boeing and composed of “four RL10C-3 engines that produce almost four times more thrust than the one RL10B-2 engine that powers the ICPS,” per NASA. That additional engine will enable the space agency to haul 38 tons of cargo out of Earth’s gravity well. This updated block will provide NASA a bit more flexibility in its launches. A 1B rocket can be configured to lift the Orion spacecraft or cargo loads into deep space as easily as it can be for hauling large cargoes to the moon or Mars. NASA plans to lift unwieldy portions of the moonbase and Gateway into space with it.
The SLS’ final form (for now) will be Block 2. Standing more than 30 stories tall, weighing the equivalent of 10 fully-loaded 747’s, the block 2 blasting 9.2 million pounds of thrust (20 percent more than the Saturn V) to push 46 metric tons of stuff (taking up as much as 54,000 square feet) into deep space. Once that configuration comes online, NASA expects it to take on much of the heavy lifting (sorry not sorry) in delivering crews and cargo to the moon.
Orion spacecraft
Riding atop the SLS’s multi-ton controlled explosions is the Orion Spacecraft, the first crew capsule designed for deep space exploration in more than a generation. Designed and built with help from the ESA, the Orion sandwiches a four-person crew cabin in between a services module that holds all of the important life support, navigation and propulsion systems, and a Launch Abort System (LAS) that will forcibly eject the crew capsule from the larger launch vehicle if a catastrophic failure occurs during takeoff.
The 50-foot tall LAS weighs 16,000 pounds and is designed to engage within milliseconds of a launch going sideways, lifting the crew cabin away from the rest of the SLS at Mach 1.2 using the 400,000 pounds of thrust produced by the abort motor. Its attitude control motor provides another 7,000 pounds of thrust to keep the capsule upright during escape while the jettison motor will separate the LAS from the cabin once clear, the latter deploying a parachute ahead of its upcoming water landing.
The LAS actually predates Orion by four years. The LAS was first integrated into a Delta IV and flown at the White Sands test facility in New Mexico in 2010 while the (uncrewed) Orion Exploration Flight Test-1 didn’t take off for its four-hour, two orbit jaunt until 2014.
The Orion main cabin is just under 16 feet tall and just over 16 feet in diameter. Its four wing solar array produces 11kW of power and the attached service module holds enough air and water to keep the crew alive, if a bit panicked and sir-crazy, for up to three weeks.
Exploration ground systems
Located at the Kennedy Space Center in Florida, the Artemis program’s Exploration Ground Systems (EGS) is tasked with developing and enacting the facilities and operations necessary to conduct SLS missions. That includes the Vehicle Assembly Building, the Launch Control Center, the Firing Rooms, Mobile Launchers 1 and 2, the Crawlers that haul rockets out to the launchpads, and also the launchpads — specifically Launch Pad 39B. Teams have been working to modernize many of those facilities and NASA notes that it, “has successfully upgraded its processes, facilities, and ground support equipment to safely handle rockets and spacecraft during assembly, transport, and launch.”
NASA already has five main Artemis launches scheduled. The uncrewed Artemis I, again, successfully launched in November. Artemis II, which will carry four live astronauts for the first time but only loop around the moon, launches in 2024. Artemis III will go up in 2025 and is expected to be the first to actually set down on the moon. Artemis IV is slated for 2027 and will deliver half of the lunar Gateway (as well as debut the EUS) while Artemis V is set to deliver the other half of the Gateway in 2028. From there, NASA has some thoughts on Artemis missions VI (2029) through X (2033) but has not finalized any details as of yet.
Artemis support missions
“We need several years in orbit and on the surface of the moon to build operational confidence for conducting long-term work and supporting life away from Earth before we can embark on the first multi-year human mission to Mars,” Bridenstine said in 2020. “The sooner we get to the moon, the sooner we get American astronauts to Mars.”
But before we can build confidence in our ability to survive on Mars, we need to build confidence in our ability to survive on the moon. The Artemis support missions will do just that. The Capstone Mission ("Cislunar Autonomous Positioning System Technology Operations and Navigation Experiment"), for example, successfully launched a 55-pound cubesat in June to confirm NASA’s math for the much larger Gateway’s future orbital path. While in orbit, the Capstone will communicate and coordinate some of its maneuvers with the Lunar Reconnaissance Orbiter which has been circling the moon since 2009.
In 2023, NASA also plans to launch the VIPER robotic rover to the moon’s South Pole where it will search the lowest, darkest, coldest craters for accessible water ice. Finding a source for H2O is of paramount importance to the long-term viability of the colony. In space, water isn’t just for drinking and bathing — it can be split into its component atoms and used to fuel our oxidizing rockets, potentially turning the Moon into an orbital gas station as we push farther out from Earth. The rover, and others like it, will be delivered to the surface as part of NASA’s Commercial Lunar Payload Services (CLPS) program.
It wasn’t until the mid 1990s that NASA even confirmed the presence of water ice on the moon and only two years ago did they discovered ice accessible from the moon’s surface. “We had indications that H2O – the familiar water we know – might be present on the sunlit side of the moon,” Paul Hertz, director of the Astrophysics Division in the Science Mission Directorate at NASA Headquarters, said at the time. “Now we know it is there. This discovery challenges our understanding of the lunar surface and raises intriguing questions about resources relevant for deep space exploration.”
Similarly, any habitat established on the surface will need an ample supply of electricity to remain online. Solar charging is one obvious choice (that lack of atmosphere is finally coming in handy) but NASA has never been one to underprepare and has already selected three aerospace companies to develop nuclear power sources for potential deployment.
Gateway
In addition to a surface installation, NASA plans on putting a full-fledged space station, dubbed the Lunar Gateway, into orbit around the moon where it will serve much the same purpose as the ISS does today. Visiting researchers will stay aboard the pressurized Habitation and Logistics Outpost (HALO) module where they’ll have access to research facilities, remote rover controls and docking for both Orion capsules from Earth and HLS (Human Landing System) landers to the moon’s surface. A 60kW solar plant will provide power to the station, which also serves as a communications relay hub with the planet. The station’s position around the moon will also provide a unique astronomical perspective for future research.
The Gateway will very much be an international operation. As NASA points out, Canada’s CSA is providing “advanced robotics” for use upon the station, the ESA is supplying a second living module called the International Habitat (IHab) as well as the ESPRIT communications module and an array of research cubesats. Japan’s JAXA will kick in additional habitat components and assist with resupply logistics.
Human Landing System and rovers
From the Gateway, astronauts and researchers will ferry down to the moon’s surface to collect samples, run experiments and conduct observations aboard the Human Landing System, a reusable lunar lander program currently being operated out of Marshall Space Flight Center in Huntsville, Alabama.
NASA selected SpaceX’s Starship for its initial landing system in April 2021, awarding the company $2.9 billion to further the vehicle’s development. The agency then awarded SpaceX with another $1.15 billion this past November as part of the Option B contract modification. The extra money will help fund planned upgrades to the spacecraft, which is being modified from the base Starship design for use on and around the moon’s surface.
“Continuing our collaborative efforts with SpaceX through Option B furthers our resilient plans for regular crewed transportation to the lunar surface and establishing a long-term human presence under Artemis,” Lisa Watson-Morgan, NASA HLS program manager, said in November. “This critical work will help us focus on the development of sustainable, service-based lunar landers anchored to NASA’s requirements for regularly recurring missions to the lunar surface.”
Researchers, however, will not be content to travel nearly a quarter million miles just to set down on the moon and look out the lander’s windows. Instead, they’ll be free to wander around the surface safely ensconced in spacewalk equipment supplied by Axiom Space and Collins Aerospace.
“With these awards, NASA and our partners will develop advanced, reliable spacesuits that allow humans to explore the cosmos unlike ever before,” said Vanessa Wyche, director of NASA’s Johnson Space Center in Houston, said in June. “By partnering with industry, we are efficiently advancing the necessary technology to keep Americans on a path of successful discovery on the International Space Station and as we set our sights on exploring the lunar surface.”
Those researchers won’t be on foot either. Just as the Apollo astronauts famously bounced around on NASA’s first-gen lunar rovers, the Artemis missions will use new Lunar Terrain Vehicles. The unpressurized buggies are currently still in development but NASA expects to have a finalized proposal ready by next year and have the LTVs ready for surface service by 2028.
The Artemis Base Camp
When not in use, the LTVs will be parked at NASA’s Artemis Base Camp at the lunar South Pole, alongside a pressurized version designed for longer-duration expeditions. The surface habitat itself will be able to support up to four residents at a time and provide communications, equipment storage, power and, most importantly, robust radiation shielding (and there’s the downside of not having an atmosphere). A site hasn’t yet been officially selected, though mission planners are looking for areas near the region’s permanently shadowed craters where water ice is expected to be most easily accessible (aside from the negative 280 degree temperatures and perpetual darkness).
“On each new trip, astronauts are going to have an increasing level of comfort with the capabilities to explore and study more of the moon than ever before,” Kathy Lueders, associate administrator for human spaceflight at NASA Headquarters, said in 2020. “With more demand for access to the moon, we are developing the technologies to achieve an unprecedented human and robotic presence 240,000 miles from home. Our experience on the moon this decade will prepare us for an even greater adventure in the universe — human exploration of Mars.”
Like strokes and folks, there are different types and sources of radiation both terrestrial and in space. Non-ionizing radiation, meaning the atom doesn’t have enough energy to fully remove an electron from its orbit, can be found in microwaves, light bulbs, and Solar Energetic Particles (SEP) like visible and ultraviolet light. While these forms of radiation can damage materials and biological systems, their effects can typically be blocked (hence sunscreen and microwaves that don't irradiate entire kitchens) or screened by the Ozone layer or Earth’s magnetosphere.
Earth’s radiation belts are filled with energetic particles trapped by Earth’s magnetic field that can wreak havoc with electronics we send to space. Credits: NASA's Scientific Visualization Studio/Tom Bridgman
Ionizing radiation, on the other hand, is energetic to shed an electron and there isn’t much that can slow their positively-charged momentum. Alpha and beta particles, Gamma rays, X-rays and Galactic Cosmic Rays, “heavy, high-energy ions of elements that have had all their electrons stripped away as they journeyed through the galaxy at nearly the speed of light,” per NASA. “GCR are a dominant source of radiation that must be dealt with aboard current spacecraft and future space missions within our solar system.” GCR intensity is inversely proportional to the relative strength of the Sun’s magnetic field, meaning that they are strongest when the Sun’s field is at its weakest and least able to deflect them.
Despite their dissimilar natures, both GCR and SEP damage the materials designed to shield our squishy biological bodies from radiation along with our biological bodies themselves. Their continued bombardment has a cumulative negative effect on human physiology resulting not just in cancer but cataracts, neurological damage, germline mutations, and acute radiation sickness if the dose is high enough. For materials, high-energy particles and photons can cause “temporary damage or permanent failure of spacecraft materials or devices,” Zicai Shen of the Beijing Institute of Spacecraft Environment Engineering notes in 2019’s Protection of Materials from Space Radiation Environments on Spacecraft.
“Charged particles gradually lose energy as they pass through the material, and finally, capture a sufficient number of electrons to stop,” they added. “When the thickness of the shielding material is greater than the range of a charged particle in the material, the incident particles will be blocked in the material.”
How NASA currently protects its astronauts
To ensure that tomorrow’s astronauts arrive at Mars with all of their teeth and fingernails intact, NASA has spent nearly four decades collecting data and studying the effects radiation has on the human body. The agency’s Space Radiation Analysis Group (SRAG) at Johnson Space Center is, according to its website, “responsible for ensuring that the radiation exposure received by astronauts remains below established safety limits.”
According to NASA, “the typical average dose for a person is about 360 mrems per year, or 3.6 mSv, which is a small dose. However, International Standards allow exposure to as much as 5,000 mrems (50 mSv) a year for those who work with and around radioactive material. For spaceflight, the limit is higher. The NASA limit for radiation exposure in low-Earth orbit is 50 mSv/year, or 50 rem/year.”
SRAG’s Space Environment Officers (SEOs) are tasked with ensuring that the astronauts can successfully complete their mission without absorbing too many RADs. They take into account the various environmental and situational factors present during a spaceflight — whether the astronauts are in LEO or on the lunar surface, whether they stay in the spacecraft or take a spacewalk, or whether there is a solar storm going on — combine and model that information with data collected from onboard and remote radiation detectors as well as the NOAA space weather prediction center, to make their decisions.
The Radiation Effects and Analysis Group at Goddard Space Flight Center, serves much the same purpose as SRAG but for mechanical systems, working to develop more effective shielding and more robust materials for use in orbit.
“We will be able to ensure that humans, electronics, spacecraft and instruments — anything we are actually sending into space — will survive in the environment we are putting it in,” Megan Casey, an aerospace engineer in the REAG said in a 2019 release. “Based on where they’re going, we tell mission designers what their space environment will be like, and they come back to us with their instrument plans and ask, ‘Are these parts going to survive there?’ The answer is always yes, no, or I don’t know. If we don’t know, that’s when we do additional testing. That’s the vast majority of our job.”
NASA’s research will continue and expand throughout the upcoming Artemis mission era. During test flights for the Artemis I mission, both the SLS rocket and the Orion spacecraft will be outfitted with sensors measuring radiation levels in deep space beyond the moon — specifically looking at the differences in relative levels beyond the Earth’s Van Allen Belts. Data collected and lessons learned from these initial uncrewed flights will help NASA engineers build better, more protective spacecraft in the future.
And once it does eventually get built, crews aboard the Lunar Gateway will maintain an expansive radiation sensor suite, including the Internal Dosimeter Array, designed to carefully and continually measure levels within the station as it makes its week-long oblong orbit around the moon.
“Understanding the effects of the radiation environment is not only critical for awareness of the environment where astronauts will live in the vicinity of the Moon, but it will also provide important data that can be used as NASA prepares for even greater endeavors, like sending the first humans to Mars,” Dina Contella, manager for Gateway Mission Integration and Utilization, said in a 2021 release.
NASA might use magnetic bubbles in the future
Tomorrow’s treks into interplanetary space, where GCR and SEP are more prevalent, are going to require more comprehensive protection than the current state of the art passive shielding materials and space weather forecasting predictions can deliver. And since the Earth’s own magnetosphere has proven so handy, researchers with the European Commission's Community Research and Development Information Service (CORDIS) have researched creating one small enough to fit on a spaceship, dubbed the Space Radiation Superconducting Shield (SR2S).
The €2.7 million SR2S program, which ran from 2013 to 2015, expanded on the idea of using superconducting magnets to generate a radiation-stopping magnetic force field first devised by ex-Nazi aerospace engineer Wernher von Braun in 1969. The magnetic field produced would be more than 3,000 times more concentrated than the one encircling the Earth and would extend out in a 10-meter sphere.
“In the framework of the project, we will test, in the coming months, a racetrack coil wound with an MgB2 superconducting tape,” Bernardo Bordini, coordinator of CERN activity in the framework of the SR2S project, said in 2015. “The prototype coil is designed to quantify the effectiveness of the superconducting magnetic shielding technology.”
It wouldn’t block all incoming radiation, but would efficiently screen out the most damaging types, like GCR, which flows through passive shielding like water through a colander. By lowering the rate at which astronauts are exposed to radiation, they’ll be able to serve on more and longer duration missions before hitting NASA’s lifetime exposure limit.
“As the magnetosphere deflects cosmic rays directed toward the earth, the magnetic field generated by a superconducting magnet surrounding the spacecraft would protect the crew,” Dr Riccardo Musenich, scientific and technical manager for the project, told Horizon in 2014. “SR2S is the first project which not only investigates the principles and the scientific problems (of magnetic shielding), but it also faces the complex issues in engineering.”
Two superconducting coils have already been constructed and tested, showing the feasibility in using them to build lightweight magnets but this is very preliminary research, mind you. The CORDIS team doesn’t anticipate this tech making it into space for another couple decades.
Researchers from University of Wisconsin–Madison's Department of Astronomy have recently set about developing their own version of CORDIS’ idea. Their Cosmic Radiation Extended Warding using the Halbach Torus (CREW HaT) project, which received prototyping funding from NASA’s Innovative Advanced Concepts (NIAC) program in February, uses “new superconductive tape technology, a deployable design, and a new configuration for a magnetic field that hasn't been explored before," according to UWM associate professor and researches lead author, Dr. Elena D'Onghia told Universe Today in May.
“The HaT geometry has never been explored before in this context or studied in combination with modern superconductive tapes,” she said in February’s NIAC summary. “It diverts over 50 percent of the biology-damaging cosmic rays (protons below 1 GeV) and higher energy high-Z ions. This is sufficient to reduce the radiation dose absorbed by astronauts to a level that is less than 5 percent of the lifetime excess risk of cancer mortality levels established by NASA.”
Or astronauts might wear leaden vests to protect their privates
But why go through the effort of magnetically encapsulating an entire spaceship when really it’s just a handful of torsos and heads that actually need the protection? That’s the idea behind the Matroshka AstroRad Radiation Experiment (MARE).
Developed in partnership with both the Israel Space Agency (ISA) and the German Aerospace Center (DLR), two of the MARE vests will be strapped aboard identical mannequins and launched into space aboard the Orion uncrewed moon mission. On their three-week flight, the mannequins, named Helga and Zohar, will travel some 280,000 miles from Earth and thousands of miles past the moon. Their innards are designed to mimic human bones and soft tissue, enabling researchers to measure the specific radiation doses they receive.
Its sibling study aboard the ISS, the Comfort and Human Factors AstroRad Radiation Garment Evaluation (CHARGE), focuses less on the vest’s anti-rad effectiveness and more on the ergonomics, fit and feel of it as astronauts go about their daily duties. The European Space Agency is also investigating garment-based radiation shielding with the FLARE suit, an “emergency device that aims to protect astronauts from intense solar radiation when traveling out of the magnetosphere on future Deep Space missions.”
Or we’ll line the ship hulls with water and poo!
One happy medium between the close-in discomfort of wearing a leaded apron in microgravity and the existential worry of potentially having your synapses scrambled by a powerful electromagnet is known as Water Wall technology.
“Nature uses no compressors, evaporators, lithium hydroxide canisters, oxygen candles, or urine processors,” Marc M. Cohen Arch.D, argued in the 2013 paper Water Walls Architecture: Massively Redundant and Highly Reliable Life Support for Long Duration Exploration Missions. “For very long-term operation — as in an interplanetary spacecraft, space station, or lunar/planetary base — these active electro-mechanical systems tend to be failure-prone because the continuous duty cycles make maintenance difficult.”
So, rather than rely on heavy and complicated mechanizations to process the waste materials that astronauts emit during a mission, this system utilizes osmosis bags that mimic nature’s own passive means of purifying water. In addition to treating gray and black water, these bags could also be adapted to scrub CO2 from the air, grow algae for food and fuel, and can be lined against the inner hull of a spacecraft to provide superior passive shielding against high energy particles.
“Water is better than metals for [radiation] protection,” Marco Durante of the Technical University of Darmstadt in Germany, told New Scientist in 2013. This is because the three-atom nucleus of a water molecule contains more mass than a metal atom and therefore is more effective at blocking GCR and other high energy rays, he continued.
The crew aboard the proposed Inspiration Mars mission, which would have slingshot a pair of private astronauts around Mars in a spectacular flyby while the two planets were at their orbital closest in 2018. You haven’t heard anything about that because the nonprofit behind it quietly went under in 2015. But had they somehow pulled off that feat, the plan was to have the astronauts poop into bags, sophon out the liquid for reuse and then pile the vacuum-sealed shitbricks against the walls of the spacecraft — alongside their boxes of food — to act as radiation insulation.
“It’s a little queasy sounding, but there’s no place for that material to go, and it makes great radiation shielding,” Taber MacCallum, a member of the nonprofit funded by Dennis Tito, told New Scientist. “Food is going to be stored all around the walls of the spacecraft, because food is good radiation shielding.” It’s just a quick jaunt to the next planet over, who needs plumbing and sustenance?
Like strokes and folks, there are different types and sources of radiation both terrestrial and in space. Non-ionizing radiation, meaning the atom doesn’t have enough energy to fully remove an electron from its orbit, can be found in microwaves, light bulbs, and Solar Energetic Particles (SEP) like visible and ultraviolet light. While these forms of radiation can damage materials and biological systems, their effects can typically be blocked (hence sunscreen and microwaves that don't irradiate entire kitchens) or screened by the Ozone layer or Earth’s magnetosphere.
Earth’s radiation belts are filled with energetic particles trapped by Earth’s magnetic field that can wreak havoc with electronics we send to space. Credits: NASA's Scientific Visualization Studio/Tom Bridgman
Ionizing radiation, on the other hand, is energetic to shed an electron and there isn’t much that can slow their positively-charged momentum. Alpha and beta particles, Gamma rays, X-rays and Galactic Cosmic Rays, “heavy, high-energy ions of elements that have had all their electrons stripped away as they journeyed through the galaxy at nearly the speed of light,” per NASA. “GCR are a dominant source of radiation that must be dealt with aboard current spacecraft and future space missions within our solar system.” GCR intensity is inversely proportional to the relative strength of the Sun’s magnetic field, meaning that they are strongest when the Sun’s field is at its weakest and least able to deflect them.
Despite their dissimilar natures, both GCR and SEP damage the materials designed to shield our squishy biological bodies from radiation along with our biological bodies themselves. Their continued bombardment has a cumulative negative effect on human physiology resulting not just in cancer but cataracts, neurological damage, germline mutations, and acute radiation sickness if the dose is high enough. For materials, high-energy particles and photons can cause “temporary damage or permanent failure of spacecraft materials or devices,” Zicai Shen of the Beijing Institute of Spacecraft Environment Engineering notes in 2019’s Protection of Materials from Space Radiation Environments on Spacecraft.
“Charged particles gradually lose energy as they pass through the material, and finally, capture a sufficient number of electrons to stop,” they added. “When the thickness of the shielding material is greater than the range of a charged particle in the material, the incident particles will be blocked in the material.”
How NASA currently protects its astronauts
To ensure that tomorrow’s astronauts arrive at Mars with all of their teeth and fingernails intact, NASA has spent nearly four decades collecting data and studying the effects radiation has on the human body. The agency’s Space Radiation Analysis Group (SRAG) at Johnson Space Center is, according to its website, “responsible for ensuring that the radiation exposure received by astronauts remains below established safety limits.”
According to NASA, “the typical average dose for a person is about 360 mrems per year, or 3.6 mSv, which is a small dose. However, International Standards allow exposure to as much as 5,000 mrems (50 mSv) a year for those who work with and around radioactive material. For spaceflight, the limit is higher. The NASA limit for radiation exposure in low-Earth orbit is 50 mSv/year, or 50 rem/year.”
SRAG’s Space Environment Officers (SEOs) are tasked with ensuring that the astronauts can successfully complete their mission without absorbing too many RADs. They take into account the various environmental and situational factors present during a spaceflight — whether the astronauts are in LEO or on the lunar surface, whether they stay in the spacecraft or take a spacewalk, or whether there is a solar storm going on — combine and model that information with data collected from onboard and remote radiation detectors as well as the NOAA space weather prediction center, to make their decisions.
The Radiation Effects and Analysis Group at Goddard Space Flight Center, serves much the same purpose as SRAG but for mechanical systems, working to develop more effective shielding and more robust materials for use in orbit.
“We will be able to ensure that humans, electronics, spacecraft and instruments — anything we are actually sending into space — will survive in the environment we are putting it in,” Megan Casey, an aerospace engineer in the REAG said in a 2019 release. “Based on where they’re going, we tell mission designers what their space environment will be like, and they come back to us with their instrument plans and ask, ‘Are these parts going to survive there?’ The answer is always yes, no, or I don’t know. If we don’t know, that’s when we do additional testing. That’s the vast majority of our job.”
NASA’s research will continue and expand throughout the upcoming Artemis mission era. During test flights for the Artemis I mission, both the SLS rocket and the Orion spacecraft will be outfitted with sensors measuring radiation levels in deep space beyond the moon — specifically looking at the differences in relative levels beyond the Earth’s Van Allen Belts. Data collected and lessons learned from these initial uncrewed flights will help NASA engineers build better, more protective spacecraft in the future.
And once it does eventually get built, crews aboard the Lunar Gateway will maintain an expansive radiation sensor suite, including the Internal Dosimeter Array, designed to carefully and continually measure levels within the station as it makes its week-long oblong orbit around the moon.
“Understanding the effects of the radiation environment is not only critical for awareness of the environment where astronauts will live in the vicinity of the Moon, but it will also provide important data that can be used as NASA prepares for even greater endeavors, like sending the first humans to Mars,” Dina Contella, manager for Gateway Mission Integration and Utilization, said in a 2021 release.
NASA might use magnetic bubbles in the future
Tomorrow’s treks into interplanetary space, where GCR and SEP are more prevalent, are going to require more comprehensive protection than the current state of the art passive shielding materials and space weather forecasting predictions can deliver. And since the Earth’s own magnetosphere has proven so handy, researchers with the European Commission's Community Research and Development Information Service (CORDIS) have researched creating one small enough to fit on a spaceship, dubbed the Space Radiation Superconducting Shield (SR2S).
The €2.7 million SR2S program, which ran from 2013 to 2015, expanded on the idea of using superconducting magnets to generate a radiation-stopping magnetic force field first devised by ex-Nazi aerospace engineer Wernher von Braun in 1969. The magnetic field produced would be more than 3,000 times more concentrated than the one encircling the Earth and would extend out in a 10-meter sphere.
“In the framework of the project, we will test, in the coming months, a racetrack coil wound with an MgB2 superconducting tape,” Bernardo Bordini, coordinator of CERN activity in the framework of the SR2S project, said in 2015. “The prototype coil is designed to quantify the effectiveness of the superconducting magnetic shielding technology.”
It wouldn’t block all incoming radiation, but would efficiently screen out the most damaging types, like GCR, which flows through passive shielding like water through a colander. By lowering the rate at which astronauts are exposed to radiation, they’ll be able to serve on more and longer duration missions before hitting NASA’s lifetime exposure limit.
“As the magnetosphere deflects cosmic rays directed toward the earth, the magnetic field generated by a superconducting magnet surrounding the spacecraft would protect the crew,” Dr Riccardo Musenich, scientific and technical manager for the project, told Horizon in 2014. “SR2S is the first project which not only investigates the principles and the scientific problems (of magnetic shielding), but it also faces the complex issues in engineering.”
Two superconducting coils have already been constructed and tested, showing the feasibility in using them to build lightweight magnets but this is very preliminary research, mind you. The CORDIS team doesn’t anticipate this tech making it into space for another couple decades.
Researchers from University of Wisconsin–Madison's Department of Astronomy have recently set about developing their own version of CORDIS’ idea. Their Cosmic Radiation Extended Warding using the Halbach Torus (CREW HaT) project, which received prototyping funding from NASA’s Innovative Advanced Concepts (NIAC) program in February, uses “new superconductive tape technology, a deployable design, and a new configuration for a magnetic field that hasn't been explored before," according to UWM associate professor and researches lead author, Dr. Elena D'Onghia told Universe Today in May.
“The HaT geometry has never been explored before in this context or studied in combination with modern superconductive tapes,” she said in February’s NIAC summary. “It diverts over 50 percent of the biology-damaging cosmic rays (protons below 1 GeV) and higher energy high-Z ions. This is sufficient to reduce the radiation dose absorbed by astronauts to a level that is less than 5 percent of the lifetime excess risk of cancer mortality levels established by NASA.”
Or astronauts might wear leaden vests to protect their privates
But why go through the effort of magnetically encapsulating an entire spaceship when really it’s just a handful of torsos and heads that actually need the protection? That’s the idea behind the Matroshka AstroRad Radiation Experiment (MARE).
Developed in partnership with both the Israel Space Agency (ISA) and the German Aerospace Center (DLR), two of the MARE vests will be strapped aboard identical mannequins and launched into space aboard the Orion uncrewed moon mission. On their three-week flight, the mannequins, named Helga and Zohar, will travel some 280,000 miles from Earth and thousands of miles past the moon. Their innards are designed to mimic human bones and soft tissue, enabling researchers to measure the specific radiation doses they receive.
Its sibling study aboard the ISS, the Comfort and Human Factors AstroRad Radiation Garment Evaluation (CHARGE), focuses less on the vest’s anti-rad effectiveness and more on the ergonomics, fit and feel of it as astronauts go about their daily duties. The European Space Agency is also investigating garment-based radiation shielding with the FLARE suit, an “emergency device that aims to protect astronauts from intense solar radiation when traveling out of the magnetosphere on future Deep Space missions.”
Or we’ll line the ship hulls with water and poo!
One happy medium between the close-in discomfort of wearing a leaded apron in microgravity and the existential worry of potentially having your synapses scrambled by a powerful electromagnet is known as Water Wall technology.
“Nature uses no compressors, evaporators, lithium hydroxide canisters, oxygen candles, or urine processors,” Marc M. Cohen Arch.D, argued in the 2013 paper Water Walls Architecture: Massively Redundant and Highly Reliable Life Support for Long Duration Exploration Missions. “For very long-term operation — as in an interplanetary spacecraft, space station, or lunar/planetary base — these active electro-mechanical systems tend to be failure-prone because the continuous duty cycles make maintenance difficult.”
So, rather than rely on heavy and complicated mechanizations to process the waste materials that astronauts emit during a mission, this system utilizes osmosis bags that mimic nature’s own passive means of purifying water. In addition to treating gray and black water, these bags could also be adapted to scrub CO2 from the air, grow algae for food and fuel, and can be lined against the inner hull of a spacecraft to provide superior passive shielding against high energy particles.
“Water is better than metals for [radiation] protection,” Marco Durante of the Technical University of Darmstadt in Germany, told New Scientist in 2013. This is because the three-atom nucleus of a water molecule contains more mass than a metal atom and therefore is more effective at blocking GCR and other high energy rays, he continued.
The crew aboard the proposed Inspiration Mars mission, which would have slingshot a pair of private astronauts around Mars in a spectacular flyby while the two planets were at their orbital closest in 2018. You haven’t heard anything about that because the nonprofit behind it quietly went under in 2015. But had they somehow pulled off that feat, the plan was to have the astronauts poop into bags, sophon out the liquid for reuse and then pile the vacuum-sealed shitbricks against the walls of the spacecraft — alongside their boxes of food — to act as radiation insulation.
“It’s a little queasy sounding, but there’s no place for that material to go, and it makes great radiation shielding,” Taber MacCallum, a member of the nonprofit funded by Dennis Tito, told New Scientist. “Food is going to be stored all around the walls of the spacecraft, because food is good radiation shielding.” It’s just a quick jaunt to the next planet over, who needs plumbing and sustenance?
After two-and-a-half years of delays, Boeing’s Starliner capsule successfully docked with the International Space Station. It was an important milestone for a company that has, at least in the popular imagination, struggled to catch up with SpaceX. So it’s fitting how Boeing decided it would celebrate a successful mission.
— International Space Station (@Space_Station) May 21, 2022
When the crew of the ISS opened the hatch to Starliner, they found a surprise inside the spacecraft. Floating next to Orbital Flight Test-2’s seated test dummy was a plush toy representing Jebediah Kerman, one of four original “Kerbonauts” featured in Kerbal Space Program. Jeb, as he’s better known by the KSP community, served as the flight’s zero-g indicator. Russian cosmonaut Yuri Gagarin took a small doll with him on the first-ever human spaceflight, and ever since it has become a tradition for most space crews to carry plush toys with them to make it easy to see when they've entered a microgravity environment.
If you’ve ever played Kerbal Space Program, you have a sense of why it was so fitting Boeing decided to send Jeb to space. In KSP, designing spacecraft that will carry your Kerbonauts to orbit and beyond is no easy task. Often your initial designs will fall and crash as they struggle to fly free of Kerbin’s gravity. But you go back to the drawing board and tweak your designs until you find one that works. In a way, that’s exactly what Boeing’s engineers had to do after Starliner’s first test flight in 2019 failed due to a software issue, and its second one was delayed following an unexpected valve problem.
Boeing kept Jeb’s presence on OFT-2 secret until the spacecraft docked with the ISS. A spokesperson for the company told collectSPACE that Starliner’s engineering team chose the mascot in part because of the science, technology, engineering and math lessons KSP has to teach players. Jeb will spend the next few days with the crew of the ISS before they place him back in the spacecraft for its return trip to Earth.
As the scope and focus of human spaceflight has evolved, so too have NASA’s methods and operations. Regions that were once accessible only by the world’s most powerful nations are today increasingly within reach of Earth’s civilian population, the richest uppermost crusts, at least. The business community is also eyeing near Earth space as the next potentially multi-trillion dollar economy and is already working with the space agency to develop the technology and infrastructure necessary to continue NASA’s work in the decades following the ISS’ decommissioning. At SXSW 2022 last week, a panel of experts on the burgeoning private spaceflight industry discussed the nuts and bolts of NASA’s commercial services program and what business in LEO will likely entail.
As part of the panel, The Commercial Space Age Is Here, Tim Crain, CTO of Intuitive Machines, Douglas Terrier, associate director of vision and technology of NASA's Johnson Space Center, and Matt Ondler, CTO and director of engineering at Axiom Space, sat down with Houston Spaceport director, Arturo Machuca. Houston has been a spacefaring hub since NASA’s founding and remains a hotbed for orbital and spacelift technology startups today.
“We're going from a model of where we've had primarily government funded interests in space to one that's going to be focused a lot on the commercial sector,” Terrier said, pointing out that Axiom, Intuitive Machines, and “SpaceX down in Boca Chica” were quickly being joined by myriad startups offering a variety of support and development services.
“[Space is] the most important frontier for the United States to continue to have world leadership in and our goal is to ensure that we continue to do that in a new model that involves harnessing the innovation and the expertise from both inside and outside of NASA in the community represented here,” he continued.
Axiom is no stranger to working with both sides of the government contractor dynamic. It is scheduled to launch the first fully private crew mission to the ISS in April and plans to build, launch and affix a privately funded habitat module to the station by 2028. “This commercial space, very similar to the beginning of the internet,” Older explained. “There were a few key technologies that really allowed the internet to explode and so there's a few things in aerospace that will really allow commercial space to take off.”
“We think that the low Earth orbit economy is a trillion dollar economy, whether it's bioprinting, organs, whether it's making special fiber optic cable,” he continued. “I am completely convinced that 15 to 20 years from now we're going to be surrounded by objects that we can't imagine how we [had] lived without that were manufactured in space.”
“For the last 20 years humans have lived on the International Space Station continuously,” Terrier agreed. “My grandchildren are living in a world where humans live on the moon, where they'll get a nightly news broadcast from the moon? I mean, the opportunities from a societal- and civilization-changing standpoint is beyond comparison.. is actually beyond comprehension.”
The space-based economy is already valued at around $400 billion, Terrier added, with government investment accounting for around a quarter of the necessary upkeep funding and the rest coming from the private sector. He noted that NASA plays two primary roles as President Kennedy dictated in his 1962 “Why Go to the Moon” speech at Rice University: the scientific exploration of space for one, but also “to create the conditions for commercial success for United States in space,” Terrier said.
“It's synergistic in a sense that the more companies operating in space, the more of an industrial base we can call on — driving the price down, amortizing the access to space — so that NASA doesn't have to bear that cost,” he said. “It creates a role where there are things like exploring out among the planets, for which there isn't a business case — clearly the government needs to take the lead there. And then there are things where we're now commercializing low Earth orbit and that is success for everybody.”
This won’t be the first time that the US government hands off control of technology it previously had monopoly power over, Crain added. He points to NACA as “NASA for aviation in the 20s” and guided the government’s commercialization of aircraft technology.
“The only reason we can build a commercial space station is because of 25 years of flying the international space station and all the things that we've learned from NASA,” Ondler said. “NASA has learned about keeping humans alive [in space] for long periods of time. We're really leveraging so much history and so much of the government's investment to build our commercial station.”
Ondler pointed out that construction of the 7-foot x 3-foot Earth Observatory window being installed in Axiom’s station module, “by far the largest space window ever attempted,” would not have been possible without the knowledge and coaching of a former NASA space shuttle engineer. “her expertise, just her helping an engineer in one little area,” Ondler said, “allowed him to design a really good window on his first try.”
“We definitely stand on the shoulder of the great work that the space community has done until now, in terms of technology,” Crain agreed. The Apollo era, he notes, was dominated by producing one-off spacecraft parts meticulously designed for often singular use cases but that system is no longer sufficient. “The more we can make our supply chain, not custom parts, but things that have already been used already in a terrestrial market, the better off we are,” he said.
“Our mindset has to shift from ‘well, let's go all in, I'm building this first lander’ to doing it the first time already looking at the second lander,” Crain continued. “What are the differences between the two, how do we regularize that production in a way so that our design, the core of that vehicle, is basically the same from flight to flight?”
Once the Artemis missions begin in earnest, that supply chain will begin to stretch and expand. It will extend first to LEO, but should attempts to colonize the moon prove successful, it will grow to support life and business there, much like how towns continually grew along the trade and expansion routes of the American West. “You don't load up your wagons in Virginia and go straight to San Francisco,” Terrier said. “You stop in Saint Louis and reprovision, and people build up an economy around that.”
“The cool thing is that it's not just aerospace engineering anymore,” Crain added. He noted that, for example, retinal implants can be more accurately and efficiently printed in microgravity than they can planetside, but the commercial process for actually doing so has yet to be devised. “There's a completely different industry that we're gonna need. Folks to figure out, how do we build that [retinal implant printing] machine? How do we bring it and the raw materials up and down [from LEO]? We need marketing people and all those sort of folks. It's not just aerospace engineering and I think that's really what we mean when we talk about the trillion dollar economy.”